If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2=-64w
We move all terms to the left:
6w^2-(-64w)=0
We get rid of parentheses
6w^2+64w=0
a = 6; b = 64; c = 0;
Δ = b2-4ac
Δ = 642-4·6·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-64}{2*6}=\frac{-128}{12} =-10+2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+64}{2*6}=\frac{0}{12} =0 $
| x-22+34=-14 | | 6(5-8w)+12=-5.4 | | 6w=63 | | 1.5r-+15=2.25r | | 2x+7+2x+5=−1 | | 3/2x=2/3x=2 | | 63-6m=9 | | m/2-7=-14 | | 62x+7+422x+5=−1 | | 10−4(2w+1)=6w−4(6+w) | | 17+z=23 | | 40=5(x3) | | 3/4x=8=2x-12 | | 8(-4+2z)=-48 | | 16x+2=1/24x | | 6.5x4=2.5 | | t÷8=64t= | | 7/(3x-15)=0 | | 14b+5=12b+27 | | 7x-8=3x-4x-8 | | 9z+8=6 | | -89=1+8(7/4p+1) | | -6x=1x+-29 | | -13.16=4.88+4j | | -7x+23=-15 | | 114/f=8 | | 637/48=19/6n+5/8n | | x–(5–2.x)=35 | | x–(5–2x)=35 | | 4p+16=32 | | 62+5x-4+x-2=180 | | 4(20+5x)=60 |